10 research outputs found

    Power Management Strategies in Energy-Harvesting Wireless Sensor Networks

    Get PDF
    Power management strategies are extremely important in Wireless Sensor Networks (WSNs). The objective is to make the nodes operate as long as possible. In the same context, in this article, our aim is to provide the optimal transmission power to maximize the network lifetime using the Orthogonal Multiple Access Channel (OMAC) in Harvesting System (HS). We consider that the nodes have direct communication with a Fusion Center (FC) with causal Channel Side Information (CSI) at the sender and receiver.We begin the analysis by considering a single transmitter node powered by a rechargeable battery with limited capacity energy. Afterward, we generalize the analysis with M transmitter nodes. In both cases, the transmitters are able to harvest energy from nature.Eventually, we show the viability of our approach in simulations results

    Increasing Network Lifetime in an Energy-Constrained Wireless Sensor Network

    No full text
    International audienceEnergy in Wireless Sensor Networks is a scarce resource, therefore an energy-efficient management is required to increase the network lifetime. In this paper, we study the problem of optimal power allocation, taking into account the estimation of total signal-to-noise ratio (SNR) at the Fusion Center (FC). We consider that nodes transmit their data to the Fusion Center over quasi-static Rayleigh fading channels (QSRC). In order to analyze our approach, we will investigate first the orthogonal channels, and secondly the non-orthogonal ones introducing a virtual MISO in the communication. We consider in both cases that the nodes have Channel State Information (CSI). Simulations that have been conducted using these two channel configurations show that, thanks to our new algorithm, the network lifetime is extended by an average that can reach 82,80% compared to the network lifetime in the other methods

    Optimal Cluster Head in DTN Routing Hierarchical Topology (DRHT)

    Get PDF
    In delay tolerant networking (DTN), nodes are autonomous and behave in an unpredictable way. Consequently, a control mechanism of topology is necessary. This mechanism should ensure the overall connectivity of the network taking into account nodes’ mobility. In this paper, we study the problem of data routing with an optimal delay in the bundle layer, by exploiting: the clustering, the messages ferries and the optimal election of cluster head (CH). We first introduce the DTN routing hierarchical topology (DRHT) which incorporates these three factors into the routing metric. We propose an optimal approach to elect a CH based on four criteria: the residual energy, the intra-cluster distance, the node degree and the head count of probable CHs. We proceed then to model a Markov decision process (MDP) to decide the optimal moment for sending data in order to ensure a higher delivery rate within a reasonable delay. At the end, we present the simulation results demonstrating the effectiveness of the DRHT. Our simulation shows that while using the DRHT which is based on the optimal election of CH, the traffic control during the TTL interval (Time To Live) is balanced, which greatly increases the delivery rate of bundles and decreases the loss rate

    Automatic target detection and localization using ultra-wideband radar

    Get PDF
    The pulse ultra-wide band (UWB) radar consists of switching of energy of very short duration in an ultra-broadband emission chain, and the UWB signal emitted is an ultrashort pulse, of the order of nanoseconds, without a carrier. These systems can indicate the presence and distances of a distant object, call a target, and determine its size, shape, speed, and trajectory. In this paper, we present a UWB radar system allowing the detection of the presence of a target and its localization in a road environment based on the principle of correlation of the reflected signal with the reference and the determination of its correlation peak

    Effect of PGPR and mixed cropping on mycorrhizal status, soil fertility, and date palm productivity under organic farming system

    Get PDF
    A field study was carried out for two years at an organic farm under arid climate in Morocco to investigate the effect of an integrated biofertilization approach on Arbuscular Mycorrhizal Fungal (AMF) abundance and infectivity, soil fertility, yield, and fruit quality of date palm. The biofertilization approach included three management practices namely application of compost, inoculation with a consortium of native PGPR strains originally isolated from date palms of Drâa-Tafilalet region (Pseudomonas koreensis, Serratia nematodiphila, S. marcescens, and Klebsiella sp.) and using mixed-cropping with sorghum. Accordingly, four treatments were established in this study: 1) mixed-cropping with sorghum, 2) PGPR inoculation, 3) sorghum + PGPR, and 4) control (without sorghum or PGPR). All treatments received compost as organic amendment. Results revealed that mixed-cropping with sorghum significantly increased AMF colonization intensity and spore density by more than 50% and 29%, respectively. Sorghum association also resulted in a significant increase in organic matter concentrations of up to 2.95% against 2.45% in monocropping soils. The integrated biofertilization approach resulted in the highest yield with an increase rate of 10.6% and 12.1% in the first and the second year, respectively compared to date palms receiving compost alone. Similarly, the mineral composition and quality characteristics of date fruits were significantly improved. The enhancement of soil fertility and date palm productivity under harsh environmental conditions represents a first step towards the adoption of sustainable practices in the region and in similar areas

    Energy efficiency of MIMO cooperative networks with energy harvesting sensor nodes

    No full text
    International audienceThis paper addresses the maximizing network lifetime problem in wireless sensor networks (WSNs) taking into account the total Symbol Error rate (SER) at destination. Therefore, efficient power management is needed for extend network lifetime. Our approach consists to provide the optimal transmission power using the orthogonal multiple access channels between each sensor. In order to deeply study the properties of our approach, firstly, the simple case is considered; the information sensed by the source node passes by a single relay before reaching the destination node. Secondly, global case is studied; the information passes by several relays. We consider, in the previous both cases, that the batteries are nonrechargeable. Thirdly, we spread our work the case where the batteries are rechargeable with unlimited storage capacity. In all three cases, we suppose that Maximum Ratio Combining (MRC) is used as a detector, and Amplify and Forward (AF) as a relaying strategy. Simulation results show the viability of our approach which the network lifetime is extended of more than 70.72%when the batteries are non rechargeable and 100.51% when the batteries are rechargeable in comparison with other traditional method

    Automatic target detection and localization using ultra-wideband radar

    No full text
    The pulse ultra-wide band (UWB) radar consists of switching of energy of very short duration in an ultra-broadband emission chain, and the UWB signal emitted is an ultrashort pulse, of the order of nanoseconds, without a carrier. These systems can indicate the presence and distances of a distant object, call a target, and determine its size, shape, speed, and trajectory. In this paper, we present a UWB radar system allowing the detection of the presence of a target and its localization in a road environment based on the principle of correlation of the reflected signal with the reference and the determination of its correlation peak
    corecore